Metamath Proof Explorer


Theorem eupths

Description: The Eulerian paths on the graph G . (Contributed by AV, 18-Feb-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Hypothesis eupths.i I=iEdgG
Assertion eupths EulerPathsG=fp|fTrailsGpf:0..^fontodomI

Proof

Step Hyp Ref Expression
1 eupths.i I=iEdgG
2 fveq2 g=GiEdgg=iEdgG
3 2 1 eqtr4di g=GiEdgg=I
4 3 dmeqd g=GdomiEdgg=domI
5 foeq3 domiEdgg=domIf:0..^fontodomiEdggf:0..^fontodomI
6 4 5 syl g=Gf:0..^fontodomiEdggf:0..^fontodomI
7 df-eupth EulerPaths=gVfp|fTrailsgpf:0..^fontodomiEdgg
8 6 7 fvmptopab EulerPathsG=fp|fTrailsGpf:0..^fontodomI