Metamath Proof Explorer


Theorem evl1gsumaddval

Description: Value of a univariate polynomial evaluation mapping an additive group sum to a group sum of the evaluated variable. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q Q=eval1R
evl1gsumadd.k K=BaseR
evl1gsumadd.w W=Poly1R
evl1gsumadd.p P=R𝑠K
evl1gsumadd.b B=BaseW
evl1gsumadd.r φRCRing
evl1gsumadd.y φxNYB
evl1gsumadd.n φN0
evl1gsumaddval.f φNFin
evl1gsumaddval.c φCK
Assertion evl1gsumaddval φQWxNYC=RxNQYC

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q Q=eval1R
2 evl1gsumadd.k K=BaseR
3 evl1gsumadd.w W=Poly1R
4 evl1gsumadd.p P=R𝑠K
5 evl1gsumadd.b B=BaseW
6 evl1gsumadd.r φRCRing
7 evl1gsumadd.y φxNYB
8 evl1gsumadd.n φN0
9 evl1gsumaddval.f φNFin
10 evl1gsumaddval.c φCK
11 7 ralrimiva φxNYB
12 1 3 2 5 6 10 11 9 evl1gsumd φQWxNYC=RxNQYC