Metamath Proof Explorer


Theorem evl1gsumd

Description: Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses evl1gsumd.q O=eval1R
evl1gsumd.p P=Poly1R
evl1gsumd.b B=BaseR
evl1gsumd.u U=BaseP
evl1gsumd.r φRCRing
evl1gsumd.y φYB
evl1gsumd.m φxNMU
evl1gsumd.n φNFin
Assertion evl1gsumd φOPxNMY=RxNOMY

Proof

Step Hyp Ref Expression
1 evl1gsumd.q O=eval1R
2 evl1gsumd.p P=Poly1R
3 evl1gsumd.b B=BaseR
4 evl1gsumd.u U=BaseP
5 evl1gsumd.r φRCRing
6 evl1gsumd.y φYB
7 evl1gsumd.m φxNMU
8 evl1gsumd.n φNFin
9 raleq n=xnMUxMU
10 9 anbi2d n=φxnMUφxMU
11 mpteq1 n=xnM=xM
12 11 oveq2d n=PxnM=PxM
13 12 fveq2d n=OPxnM=OPxM
14 13 fveq1d n=OPxnMY=OPxMY
15 mpteq1 n=xnOMY=xOMY
16 15 oveq2d n=RxnOMY=RxOMY
17 14 16 eqeq12d n=OPxnMY=RxnOMYOPxMY=RxOMY
18 10 17 imbi12d n=φxnMUOPxnMY=RxnOMYφxMUOPxMY=RxOMY
19 raleq n=mxnMUxmMU
20 19 anbi2d n=mφxnMUφxmMU
21 mpteq1 n=mxnM=xmM
22 21 oveq2d n=mPxnM=PxmM
23 22 fveq2d n=mOPxnM=OPxmM
24 23 fveq1d n=mOPxnMY=OPxmMY
25 mpteq1 n=mxnOMY=xmOMY
26 25 oveq2d n=mRxnOMY=RxmOMY
27 24 26 eqeq12d n=mOPxnMY=RxnOMYOPxmMY=RxmOMY
28 20 27 imbi12d n=mφxnMUOPxnMY=RxnOMYφxmMUOPxmMY=RxmOMY
29 raleq n=maxnMUxmaMU
30 29 anbi2d n=maφxnMUφxmaMU
31 mpteq1 n=maxnM=xmaM
32 31 oveq2d n=maPxnM=PxmaM
33 32 fveq2d n=maOPxnM=OPxmaM
34 33 fveq1d n=maOPxnMY=OPxmaMY
35 mpteq1 n=maxnOMY=xmaOMY
36 35 oveq2d n=maRxnOMY=RxmaOMY
37 34 36 eqeq12d n=maOPxnMY=RxnOMYOPxmaMY=RxmaOMY
38 30 37 imbi12d n=maφxnMUOPxnMY=RxnOMYφxmaMUOPxmaMY=RxmaOMY
39 raleq n=NxnMUxNMU
40 39 anbi2d n=NφxnMUφxNMU
41 mpteq1 n=NxnM=xNM
42 41 oveq2d n=NPxnM=PxNM
43 42 fveq2d n=NOPxnM=OPxNM
44 43 fveq1d n=NOPxnMY=OPxNMY
45 mpteq1 n=NxnOMY=xNOMY
46 45 oveq2d n=NRxnOMY=RxNOMY
47 44 46 eqeq12d n=NOPxnMY=RxnOMYOPxNMY=RxNOMY
48 40 47 imbi12d n=NφxnMUOPxnMY=RxnOMYφxNMUOPxNMY=RxNOMY
49 mpt0 xM=
50 49 oveq2i PxM=P
51 eqid 0P=0P
52 51 gsum0 P=0P
53 50 52 eqtri PxM=0P
54 53 fveq2i OPxM=O0P
55 crngring RCRingRRing
56 5 55 syl φRRing
57 eqid algScP=algScP
58 eqid 0R=0R
59 2 57 58 51 ply1scl0 RRingalgScP0R=0P
60 56 59 syl φalgScP0R=0P
61 60 eqcomd φ0P=algScP0R
62 61 fveq2d φO0P=OalgScP0R
63 54 62 eqtrid φOPxM=OalgScP0R
64 63 fveq1d φOPxMY=OalgScP0RY
65 ringgrp RRingRGrp
66 56 65 syl φRGrp
67 3 58 grpidcl RGrp0RB
68 66 67 syl φ0RB
69 1 2 3 57 4 5 68 6 evl1scad φalgScP0RUOalgScP0RY=0R
70 69 simprd φOalgScP0RY=0R
71 64 70 eqtrd φOPxMY=0R
72 mpt0 xOMY=
73 72 oveq2i RxOMY=R
74 58 gsum0 R=0R
75 73 74 eqtri RxOMY=0R
76 71 75 eqtr4di φOPxMY=RxOMY
77 76 adantr φxMUOPxMY=RxOMY
78 1 2 3 4 5 6 evl1gsumdlem mFin¬amφxmMUOPxmMY=RxmOMYxmaMUOPxmaMY=RxmaOMY
79 78 3expia mFin¬amφxmMUOPxmMY=RxmOMYxmaMUOPxmaMY=RxmaOMY
80 79 a2d mFin¬amφxmMUOPxmMY=RxmOMYφxmaMUOPxmaMY=RxmaOMY
81 impexp φxmMUOPxmMY=RxmOMYφxmMUOPxmMY=RxmOMY
82 impexp φxmaMUOPxmaMY=RxmaOMYφxmaMUOPxmaMY=RxmaOMY
83 80 81 82 3imtr4g mFin¬amφxmMUOPxmMY=RxmOMYφxmaMUOPxmaMY=RxmaOMY
84 18 28 38 48 77 83 findcard2s NFinφxNMUOPxNMY=RxNOMY
85 84 expd NFinφxNMUOPxNMY=RxNOMY
86 8 85 mpcom φxNMUOPxNMY=RxNOMY
87 7 86 mpd φOPxNMY=RxNOMY