Step |
Hyp |
Ref |
Expression |
1 |
|
evl1gsumd.q |
|
2 |
|
evl1gsumd.p |
|
3 |
|
evl1gsumd.b |
|
4 |
|
evl1gsumd.u |
|
5 |
|
evl1gsumd.r |
|
6 |
|
evl1gsumd.y |
|
7 |
|
evl1gsumd.m |
|
8 |
|
evl1gsumd.n |
|
9 |
|
raleq |
|
10 |
9
|
anbi2d |
|
11 |
|
mpteq1 |
|
12 |
11
|
oveq2d |
|
13 |
12
|
fveq2d |
|
14 |
13
|
fveq1d |
|
15 |
|
mpteq1 |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eqeq12d |
|
18 |
10 17
|
imbi12d |
|
19 |
|
raleq |
|
20 |
19
|
anbi2d |
|
21 |
|
mpteq1 |
|
22 |
21
|
oveq2d |
|
23 |
22
|
fveq2d |
|
24 |
23
|
fveq1d |
|
25 |
|
mpteq1 |
|
26 |
25
|
oveq2d |
|
27 |
24 26
|
eqeq12d |
|
28 |
20 27
|
imbi12d |
|
29 |
|
raleq |
|
30 |
29
|
anbi2d |
|
31 |
|
mpteq1 |
|
32 |
31
|
oveq2d |
|
33 |
32
|
fveq2d |
|
34 |
33
|
fveq1d |
|
35 |
|
mpteq1 |
|
36 |
35
|
oveq2d |
|
37 |
34 36
|
eqeq12d |
|
38 |
30 37
|
imbi12d |
|
39 |
|
raleq |
|
40 |
39
|
anbi2d |
|
41 |
|
mpteq1 |
|
42 |
41
|
oveq2d |
|
43 |
42
|
fveq2d |
|
44 |
43
|
fveq1d |
|
45 |
|
mpteq1 |
|
46 |
45
|
oveq2d |
|
47 |
44 46
|
eqeq12d |
|
48 |
40 47
|
imbi12d |
|
49 |
|
mpt0 |
|
50 |
49
|
oveq2i |
|
51 |
|
eqid |
|
52 |
51
|
gsum0 |
|
53 |
50 52
|
eqtri |
|
54 |
53
|
fveq2i |
|
55 |
|
crngring |
|
56 |
5 55
|
syl |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
2 57 58 51
|
ply1scl0 |
|
60 |
56 59
|
syl |
|
61 |
60
|
eqcomd |
|
62 |
61
|
fveq2d |
|
63 |
54 62
|
eqtrid |
|
64 |
63
|
fveq1d |
|
65 |
|
ringgrp |
|
66 |
56 65
|
syl |
|
67 |
3 58
|
grpidcl |
|
68 |
66 67
|
syl |
|
69 |
1 2 3 57 4 5 68 6
|
evl1scad |
|
70 |
69
|
simprd |
|
71 |
64 70
|
eqtrd |
|
72 |
|
mpt0 |
|
73 |
72
|
oveq2i |
|
74 |
58
|
gsum0 |
|
75 |
73 74
|
eqtri |
|
76 |
71 75
|
eqtr4di |
|
77 |
76
|
adantr |
|
78 |
1 2 3 4 5 6
|
evl1gsumdlem |
|
79 |
78
|
3expia |
|
80 |
79
|
a2d |
|
81 |
|
impexp |
|
82 |
|
impexp |
|
83 |
80 81 82
|
3imtr4g |
|
84 |
18 28 38 48 77 83
|
findcard2s |
|
85 |
84
|
expd |
|
86 |
8 85
|
mpcom |
|
87 |
7 86
|
mpd |
|