Metamath Proof Explorer


Theorem evl1gsumd

Description: Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses evl1gsumd.q O = eval 1 R
evl1gsumd.p P = Poly 1 R
evl1gsumd.b B = Base R
evl1gsumd.u U = Base P
evl1gsumd.r φ R CRing
evl1gsumd.y φ Y B
evl1gsumd.m φ x N M U
evl1gsumd.n φ N Fin
Assertion evl1gsumd φ O P x N M Y = R x N O M Y

Proof

Step Hyp Ref Expression
1 evl1gsumd.q O = eval 1 R
2 evl1gsumd.p P = Poly 1 R
3 evl1gsumd.b B = Base R
4 evl1gsumd.u U = Base P
5 evl1gsumd.r φ R CRing
6 evl1gsumd.y φ Y B
7 evl1gsumd.m φ x N M U
8 evl1gsumd.n φ N Fin
9 raleq n = x n M U x M U
10 9 anbi2d n = φ x n M U φ x M U
11 mpteq1 n = x n M = x M
12 11 oveq2d n = P x n M = P x M
13 12 fveq2d n = O P x n M = O P x M
14 13 fveq1d n = O P x n M Y = O P x M Y
15 mpteq1 n = x n O M Y = x O M Y
16 15 oveq2d n = R x n O M Y = R x O M Y
17 14 16 eqeq12d n = O P x n M Y = R x n O M Y O P x M Y = R x O M Y
18 10 17 imbi12d n = φ x n M U O P x n M Y = R x n O M Y φ x M U O P x M Y = R x O M Y
19 raleq n = m x n M U x m M U
20 19 anbi2d n = m φ x n M U φ x m M U
21 mpteq1 n = m x n M = x m M
22 21 oveq2d n = m P x n M = P x m M
23 22 fveq2d n = m O P x n M = O P x m M
24 23 fveq1d n = m O P x n M Y = O P x m M Y
25 mpteq1 n = m x n O M Y = x m O M Y
26 25 oveq2d n = m R x n O M Y = R x m O M Y
27 24 26 eqeq12d n = m O P x n M Y = R x n O M Y O P x m M Y = R x m O M Y
28 20 27 imbi12d n = m φ x n M U O P x n M Y = R x n O M Y φ x m M U O P x m M Y = R x m O M Y
29 raleq n = m a x n M U x m a M U
30 29 anbi2d n = m a φ x n M U φ x m a M U
31 mpteq1 n = m a x n M = x m a M
32 31 oveq2d n = m a P x n M = P x m a M
33 32 fveq2d n = m a O P x n M = O P x m a M
34 33 fveq1d n = m a O P x n M Y = O P x m a M Y
35 mpteq1 n = m a x n O M Y = x m a O M Y
36 35 oveq2d n = m a R x n O M Y = R x m a O M Y
37 34 36 eqeq12d n = m a O P x n M Y = R x n O M Y O P x m a M Y = R x m a O M Y
38 30 37 imbi12d n = m a φ x n M U O P x n M Y = R x n O M Y φ x m a M U O P x m a M Y = R x m a O M Y
39 raleq n = N x n M U x N M U
40 39 anbi2d n = N φ x n M U φ x N M U
41 mpteq1 n = N x n M = x N M
42 41 oveq2d n = N P x n M = P x N M
43 42 fveq2d n = N O P x n M = O P x N M
44 43 fveq1d n = N O P x n M Y = O P x N M Y
45 mpteq1 n = N x n O M Y = x N O M Y
46 45 oveq2d n = N R x n O M Y = R x N O M Y
47 44 46 eqeq12d n = N O P x n M Y = R x n O M Y O P x N M Y = R x N O M Y
48 40 47 imbi12d n = N φ x n M U O P x n M Y = R x n O M Y φ x N M U O P x N M Y = R x N O M Y
49 mpt0 x M =
50 49 oveq2i P x M = P
51 eqid 0 P = 0 P
52 51 gsum0 P = 0 P
53 50 52 eqtri P x M = 0 P
54 53 fveq2i O P x M = O 0 P
55 crngring R CRing R Ring
56 5 55 syl φ R Ring
57 eqid algSc P = algSc P
58 eqid 0 R = 0 R
59 2 57 58 51 ply1scl0 R Ring algSc P 0 R = 0 P
60 56 59 syl φ algSc P 0 R = 0 P
61 60 eqcomd φ 0 P = algSc P 0 R
62 61 fveq2d φ O 0 P = O algSc P 0 R
63 54 62 eqtrid φ O P x M = O algSc P 0 R
64 63 fveq1d φ O P x M Y = O algSc P 0 R Y
65 ringgrp R Ring R Grp
66 56 65 syl φ R Grp
67 3 58 grpidcl R Grp 0 R B
68 66 67 syl φ 0 R B
69 1 2 3 57 4 5 68 6 evl1scad φ algSc P 0 R U O algSc P 0 R Y = 0 R
70 69 simprd φ O algSc P 0 R Y = 0 R
71 64 70 eqtrd φ O P x M Y = 0 R
72 mpt0 x O M Y =
73 72 oveq2i R x O M Y = R
74 58 gsum0 R = 0 R
75 73 74 eqtri R x O M Y = 0 R
76 71 75 eqtr4di φ O P x M Y = R x O M Y
77 76 adantr φ x M U O P x M Y = R x O M Y
78 1 2 3 4 5 6 evl1gsumdlem m Fin ¬ a m φ x m M U O P x m M Y = R x m O M Y x m a M U O P x m a M Y = R x m a O M Y
79 78 3expia m Fin ¬ a m φ x m M U O P x m M Y = R x m O M Y x m a M U O P x m a M Y = R x m a O M Y
80 79 a2d m Fin ¬ a m φ x m M U O P x m M Y = R x m O M Y φ x m a M U O P x m a M Y = R x m a O M Y
81 impexp φ x m M U O P x m M Y = R x m O M Y φ x m M U O P x m M Y = R x m O M Y
82 impexp φ x m a M U O P x m a M Y = R x m a O M Y φ x m a M U O P x m a M Y = R x m a O M Y
83 80 81 82 3imtr4g m Fin ¬ a m φ x m M U O P x m M Y = R x m O M Y φ x m a M U O P x m a M Y = R x m a O M Y
84 18 28 38 48 77 83 findcard2s N Fin φ x N M U O P x N M Y = R x N O M Y
85 84 expd N Fin φ x N M U O P x N M Y = R x N O M Y
86 8 85 mpcom φ x N M U O P x N M Y = R x N O M Y
87 7 86 mpd φ O P x N M Y = R x N O M Y