| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1gsumd.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1gsumd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
evl1gsumd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evl1gsumd.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evl1gsumd.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
evl1gsumd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
evl1gsumd.m |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
| 8 |
|
evl1gsumd.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 9 |
|
raleq |
⊢ ( 𝑛 = ∅ → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝑈 ) ) |
| 10 |
9
|
anbi2d |
⊢ ( 𝑛 = ∅ → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝑈 ) ) ) |
| 11 |
|
mpteq1 |
⊢ ( 𝑛 = ∅ → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑛 = ∅ → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑛 = ∅ → ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝑛 = ∅ → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 15 |
|
mpteq1 |
⊢ ( 𝑛 = ∅ → ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑛 = ∅ → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑛 = ∅ → ( ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 18 |
10 17
|
imbi12d |
⊢ ( 𝑛 = ∅ → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 19 |
|
raleq |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 ) ) ) |
| 21 |
|
mpteq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ) |
| 24 |
23
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 25 |
|
mpteq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 27 |
24 26
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 28 |
20 27
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 29 |
|
raleq |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 ) ) |
| 30 |
29
|
anbi2d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 ) ) ) |
| 31 |
|
mpteq1 |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ) |
| 34 |
33
|
fveq1d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 35 |
|
mpteq1 |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 37 |
34 36
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 38 |
30 37
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 39 |
|
raleq |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) ) |
| 40 |
39
|
anbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) ) ) |
| 41 |
|
mpteq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) |
| 43 |
42
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ) |
| 44 |
43
|
fveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 45 |
|
mpteq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 47 |
44 46
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 48 |
40 47
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 49 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ |
| 50 |
49
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 𝑃 Σg ∅ ) |
| 51 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 52 |
51
|
gsum0 |
⊢ ( 𝑃 Σg ∅ ) = ( 0g ‘ 𝑃 ) |
| 53 |
50 52
|
eqtri |
⊢ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 0g ‘ 𝑃 ) |
| 54 |
53
|
fveq2i |
⊢ ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 0g ‘ 𝑃 ) ) |
| 55 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 56 |
5 55
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 57 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 58 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 59 |
2 57 58 51
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 60 |
56 59
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 61 |
60
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 0g ‘ 𝑃 ) ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) |
| 63 |
54 62
|
eqtrid |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) |
| 64 |
63
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑌 ) ) |
| 65 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 66 |
56 65
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 67 |
3 58
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 69 |
1 2 3 57 4 5 68 6
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( 0g ‘ 𝑅 ) ) ) |
| 70 |
69
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 71 |
64 70
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 72 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ∅ |
| 73 |
72
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑅 Σg ∅ ) |
| 74 |
58
|
gsum0 |
⊢ ( 𝑅 Σg ∅ ) = ( 0g ‘ 𝑅 ) |
| 75 |
73 74
|
eqtri |
⊢ ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 0g ‘ 𝑅 ) |
| 76 |
71 75
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 78 |
1 2 3 4 5 6
|
evl1gsumdlem |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 79 |
78
|
3expia |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ) → ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) ) |
| 80 |
79
|
a2d |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ) → ( ( 𝜑 → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) → ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) ) |
| 81 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ↔ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 82 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ↔ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 83 |
80 81 82
|
3imtr4g |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ) → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 84 |
18 28 38 48 77 83
|
findcard2s |
⊢ ( 𝑁 ∈ Fin → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 85 |
84
|
expd |
⊢ ( 𝑁 ∈ Fin → ( 𝜑 → ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) ) |
| 86 |
8 85
|
mpcom |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 87 |
7 86
|
mpd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |