Metamath Proof Explorer


Theorem evl1gsumadd

Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd . (Contributed by AV, 15-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q Q=eval1R
evl1gsumadd.k K=BaseR
evl1gsumadd.w W=Poly1R
evl1gsumadd.p P=R𝑠K
evl1gsumadd.b B=BaseW
evl1gsumadd.r φRCRing
evl1gsumadd.y φxNYB
evl1gsumadd.n φN0
evl1gsumadd.0 0˙=0W
evl1gsumadd.f φfinSupp0˙xNY
Assertion evl1gsumadd φQWxNY=PxNQY

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q Q=eval1R
2 evl1gsumadd.k K=BaseR
3 evl1gsumadd.w W=Poly1R
4 evl1gsumadd.p P=R𝑠K
5 evl1gsumadd.b B=BaseW
6 evl1gsumadd.r φRCRing
7 evl1gsumadd.y φxNYB
8 evl1gsumadd.n φN0
9 evl1gsumadd.0 0˙=0W
10 evl1gsumadd.f φfinSupp0˙xNY
11 1 2 evl1fval1 Q=RevalSub1K
12 11 a1i φQ=RevalSub1K
13 12 fveq1d φQWxNY=RevalSub1KWxNY
14 2 ressid RCRingR𝑠K=R
15 6 14 syl φR𝑠K=R
16 15 eqcomd φR=R𝑠K
17 16 fveq2d φPoly1R=Poly1R𝑠K
18 3 17 eqtrid φW=Poly1R𝑠K
19 18 fvoveq1d φRevalSub1KWxNY=RevalSub1KPoly1R𝑠KxNY
20 eqid RevalSub1K=RevalSub1K
21 eqid Poly1R𝑠K=Poly1R𝑠K
22 eqid 0Poly1R𝑠K=0Poly1R𝑠K
23 eqid R𝑠K=R𝑠K
24 eqid BasePoly1R𝑠K=BasePoly1R𝑠K
25 crngring RCRingRRing
26 2 subrgid RRingKSubRingR
27 6 25 26 3syl φKSubRingR
28 18 adantr φxNW=Poly1R𝑠K
29 28 fveq2d φxNBaseW=BasePoly1R𝑠K
30 5 29 eqtrid φxNB=BasePoly1R𝑠K
31 7 30 eleqtrd φxNYBasePoly1R𝑠K
32 18 eqcomd φPoly1R𝑠K=W
33 32 fveq2d φ0Poly1R𝑠K=0W
34 33 9 eqtr4di φ0Poly1R𝑠K=0˙
35 10 34 breqtrrd φfinSupp0Poly1R𝑠KxNY
36 20 2 21 22 23 4 24 6 27 31 8 35 evls1gsumadd φRevalSub1KPoly1R𝑠KxNY=PxNRevalSub1KY
37 19 36 eqtrd φRevalSub1KWxNY=PxNRevalSub1KY
38 12 fveq1d φQY=RevalSub1KY
39 38 eqcomd φRevalSub1KY=QY
40 39 mpteq2dv φxNRevalSub1KY=xNQY
41 40 oveq2d φPxNRevalSub1KY=PxNQY
42 13 37 41 3eqtrd φQWxNY=PxNQY