Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd . (Contributed by AV, 15-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evl1gsumadd.q | |
|
evl1gsumadd.k | |
||
evl1gsumadd.w | |
||
evl1gsumadd.p | |
||
evl1gsumadd.b | |
||
evl1gsumadd.r | |
||
evl1gsumadd.y | |
||
evl1gsumadd.n | |
||
evl1gsumadd.0 | |
||
evl1gsumadd.f | |
||
Assertion | evl1gsumadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsumadd.q | |
|
2 | evl1gsumadd.k | |
|
3 | evl1gsumadd.w | |
|
4 | evl1gsumadd.p | |
|
5 | evl1gsumadd.b | |
|
6 | evl1gsumadd.r | |
|
7 | evl1gsumadd.y | |
|
8 | evl1gsumadd.n | |
|
9 | evl1gsumadd.0 | |
|
10 | evl1gsumadd.f | |
|
11 | 1 2 | evl1fval1 | |
12 | 11 | a1i | |
13 | 12 | fveq1d | |
14 | 2 | ressid | |
15 | 6 14 | syl | |
16 | 15 | eqcomd | |
17 | 16 | fveq2d | |
18 | 3 17 | eqtrid | |
19 | 18 | fvoveq1d | |
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | crngring | |
|
26 | 2 | subrgid | |
27 | 6 25 26 | 3syl | |
28 | 18 | adantr | |
29 | 28 | fveq2d | |
30 | 5 29 | eqtrid | |
31 | 7 30 | eleqtrd | |
32 | 18 | eqcomd | |
33 | 32 | fveq2d | |
34 | 33 9 | eqtr4di | |
35 | 10 34 | breqtrrd | |
36 | 20 2 21 22 23 4 24 6 27 31 8 35 | evls1gsumadd | |
37 | 19 36 | eqtrd | |
38 | 12 | fveq1d | |
39 | 38 | eqcomd | |
40 | 39 | mpteq2dv | |
41 | 40 | oveq2d | |
42 | 13 37 41 | 3eqtrd | |