| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1gsumadd.q |
|- Q = ( eval1 ` R ) |
| 2 |
|
evl1gsumadd.k |
|- K = ( Base ` R ) |
| 3 |
|
evl1gsumadd.w |
|- W = ( Poly1 ` R ) |
| 4 |
|
evl1gsumadd.p |
|- P = ( R ^s K ) |
| 5 |
|
evl1gsumadd.b |
|- B = ( Base ` W ) |
| 6 |
|
evl1gsumadd.r |
|- ( ph -> R e. CRing ) |
| 7 |
|
evl1gsumadd.y |
|- ( ( ph /\ x e. N ) -> Y e. B ) |
| 8 |
|
evl1gsumadd.n |
|- ( ph -> N C_ NN0 ) |
| 9 |
|
evl1gsumadd.0 |
|- .0. = ( 0g ` W ) |
| 10 |
|
evl1gsumadd.f |
|- ( ph -> ( x e. N |-> Y ) finSupp .0. ) |
| 11 |
1 2
|
evl1fval1 |
|- Q = ( R evalSub1 K ) |
| 12 |
11
|
a1i |
|- ( ph -> Q = ( R evalSub1 K ) ) |
| 13 |
12
|
fveq1d |
|- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( ( R evalSub1 K ) ` ( W gsum ( x e. N |-> Y ) ) ) ) |
| 14 |
2
|
ressid |
|- ( R e. CRing -> ( R |`s K ) = R ) |
| 15 |
6 14
|
syl |
|- ( ph -> ( R |`s K ) = R ) |
| 16 |
15
|
eqcomd |
|- ( ph -> R = ( R |`s K ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( Poly1 ` R ) = ( Poly1 ` ( R |`s K ) ) ) |
| 18 |
3 17
|
eqtrid |
|- ( ph -> W = ( Poly1 ` ( R |`s K ) ) ) |
| 19 |
18
|
fvoveq1d |
|- ( ph -> ( ( R evalSub1 K ) ` ( W gsum ( x e. N |-> Y ) ) ) = ( ( R evalSub1 K ) ` ( ( Poly1 ` ( R |`s K ) ) gsum ( x e. N |-> Y ) ) ) ) |
| 20 |
|
eqid |
|- ( R evalSub1 K ) = ( R evalSub1 K ) |
| 21 |
|
eqid |
|- ( Poly1 ` ( R |`s K ) ) = ( Poly1 ` ( R |`s K ) ) |
| 22 |
|
eqid |
|- ( 0g ` ( Poly1 ` ( R |`s K ) ) ) = ( 0g ` ( Poly1 ` ( R |`s K ) ) ) |
| 23 |
|
eqid |
|- ( R |`s K ) = ( R |`s K ) |
| 24 |
|
eqid |
|- ( Base ` ( Poly1 ` ( R |`s K ) ) ) = ( Base ` ( Poly1 ` ( R |`s K ) ) ) |
| 25 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 26 |
2
|
subrgid |
|- ( R e. Ring -> K e. ( SubRing ` R ) ) |
| 27 |
6 25 26
|
3syl |
|- ( ph -> K e. ( SubRing ` R ) ) |
| 28 |
18
|
adantr |
|- ( ( ph /\ x e. N ) -> W = ( Poly1 ` ( R |`s K ) ) ) |
| 29 |
28
|
fveq2d |
|- ( ( ph /\ x e. N ) -> ( Base ` W ) = ( Base ` ( Poly1 ` ( R |`s K ) ) ) ) |
| 30 |
5 29
|
eqtrid |
|- ( ( ph /\ x e. N ) -> B = ( Base ` ( Poly1 ` ( R |`s K ) ) ) ) |
| 31 |
7 30
|
eleqtrd |
|- ( ( ph /\ x e. N ) -> Y e. ( Base ` ( Poly1 ` ( R |`s K ) ) ) ) |
| 32 |
18
|
eqcomd |
|- ( ph -> ( Poly1 ` ( R |`s K ) ) = W ) |
| 33 |
32
|
fveq2d |
|- ( ph -> ( 0g ` ( Poly1 ` ( R |`s K ) ) ) = ( 0g ` W ) ) |
| 34 |
33 9
|
eqtr4di |
|- ( ph -> ( 0g ` ( Poly1 ` ( R |`s K ) ) ) = .0. ) |
| 35 |
10 34
|
breqtrrd |
|- ( ph -> ( x e. N |-> Y ) finSupp ( 0g ` ( Poly1 ` ( R |`s K ) ) ) ) |
| 36 |
20 2 21 22 23 4 24 6 27 31 8 35
|
evls1gsumadd |
|- ( ph -> ( ( R evalSub1 K ) ` ( ( Poly1 ` ( R |`s K ) ) gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( ( R evalSub1 K ) ` Y ) ) ) ) |
| 37 |
19 36
|
eqtrd |
|- ( ph -> ( ( R evalSub1 K ) ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( ( R evalSub1 K ) ` Y ) ) ) ) |
| 38 |
12
|
fveq1d |
|- ( ph -> ( Q ` Y ) = ( ( R evalSub1 K ) ` Y ) ) |
| 39 |
38
|
eqcomd |
|- ( ph -> ( ( R evalSub1 K ) ` Y ) = ( Q ` Y ) ) |
| 40 |
39
|
mpteq2dv |
|- ( ph -> ( x e. N |-> ( ( R evalSub1 K ) ` Y ) ) = ( x e. N |-> ( Q ` Y ) ) ) |
| 41 |
40
|
oveq2d |
|- ( ph -> ( P gsum ( x e. N |-> ( ( R evalSub1 K ) ` Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |
| 42 |
13 37 41
|
3eqtrd |
|- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |