Metamath Proof Explorer


Theorem ex-ima

Description: Example for df-ima . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-ima F=2639B=12FB=6

Proof

Step Hyp Ref Expression
1 df-ima FB=ranFB
2 ex-res F=2639B=12FB=26
3 2 rneqd F=2639B=12ranFB=ran26
4 1 3 eqtrid F=2639B=12FB=ran26
5 2ex 2V
6 5 rnsnop ran26=6
7 4 6 eqtrdi F=2639B=12FB=6