Metamath Proof Explorer


Theorem exeupre2

Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion exeupre2 m suc m = N ∃! m suc m = N

Proof

Step Hyp Ref Expression
1 mopre * m suc m = N
2 moeuex * m suc m = N m suc m = N ∃! m suc m = N
3 1 2 ax-mp m suc m = N ∃! m suc m = N