Metamath Proof Explorer


Theorem expaddd

Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
expcld.2 φN0
expaddd.2 φM0
Assertion expaddd φAM+N=AMAN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 expcld.2 φN0
3 expaddd.2 φM0
4 expadd AM0N0AM+N=AMAN
5 1 3 2 4 syl3anc φAM+N=AMAN