Metamath Proof Explorer


Theorem expandan

Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses expandan.1 φ ψ
expandan.2 χ θ
Assertion expandan φ χ ¬ ψ ¬ θ

Proof

Step Hyp Ref Expression
1 expandan.1 φ ψ
2 expandan.2 χ θ
3 1 2 anbi12i φ χ ψ θ
4 df-an ψ θ ¬ ψ ¬ θ
5 3 4 bitri φ χ ¬ ψ ¬ θ