Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expandan.1 | |- ( ph <-> ps ) |
|
| expandan.2 | |- ( ch <-> th ) |
||
| Assertion | expandan | |- ( ( ph /\ ch ) <-> -. ( ps -> -. th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expandan.1 | |- ( ph <-> ps ) |
|
| 2 | expandan.2 | |- ( ch <-> th ) |
|
| 3 | 1 2 | anbi12i | |- ( ( ph /\ ch ) <-> ( ps /\ th ) ) |
| 4 | df-an | |- ( ( ps /\ th ) <-> -. ( ps -> -. th ) ) |
|
| 5 | 3 4 | bitri | |- ( ( ph /\ ch ) <-> -. ( ps -> -. th ) ) |