Metamath Proof Explorer


Theorem expandan

Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses expandan.1
|- ( ph <-> ps )
expandan.2
|- ( ch <-> th )
Assertion expandan
|- ( ( ph /\ ch ) <-> -. ( ps -> -. th ) )

Proof

Step Hyp Ref Expression
1 expandan.1
 |-  ( ph <-> ps )
2 expandan.2
 |-  ( ch <-> th )
3 1 2 anbi12i
 |-  ( ( ph /\ ch ) <-> ( ps /\ th ) )
4 df-an
 |-  ( ( ps /\ th ) <-> -. ( ps -> -. th ) )
5 3 4 bitri
 |-  ( ( ph /\ ch ) <-> -. ( ps -> -. th ) )