Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expandan.1 | |- ( ph <-> ps ) |
|
expandan.2 | |- ( ch <-> th ) |
||
Assertion | expandan | |- ( ( ph /\ ch ) <-> -. ( ps -> -. th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expandan.1 | |- ( ph <-> ps ) |
|
2 | expandan.2 | |- ( ch <-> th ) |
|
3 | 1 2 | anbi12i | |- ( ( ph /\ ch ) <-> ( ps /\ th ) ) |
4 | df-an | |- ( ( ps /\ th ) <-> -. ( ps -> -. th ) ) |
|
5 | 3 4 | bitri | |- ( ( ph /\ ch ) <-> -. ( ps -> -. th ) ) |