Metamath Proof Explorer


Theorem expandexn

Description: Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandexn.1
|- ( ph <-> -. ps )
Assertion expandexn
|- ( E. x ph <-> -. A. x ps )

Proof

Step Hyp Ref Expression
1 expandexn.1
 |-  ( ph <-> -. ps )
2 1 exbii
 |-  ( E. x ph <-> E. x -. ps )
3 exnal
 |-  ( E. x -. ps <-> -. A. x ps )
4 2 3 bitri
 |-  ( E. x ph <-> -. A. x ps )