Metamath Proof Explorer


Theorem expandexn

Description: Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandexn.1 ( 𝜑 ↔ ¬ 𝜓 )
Assertion expandexn ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 expandexn.1 ( 𝜑 ↔ ¬ 𝜓 )
2 1 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ¬ 𝜓 )
3 exnal ( ∃ 𝑥 ¬ 𝜓 ↔ ¬ ∀ 𝑥 𝜓 )
4 2 3 bitri ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 𝜓 )