Metamath Proof Explorer
Description: Expand an existential quantifier to primitives while contracting a
double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)
|
|
Ref |
Expression |
|
Hypothesis |
expandexn.1 |
⊢ ( 𝜑 ↔ ¬ 𝜓 ) |
|
Assertion |
expandexn |
⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
expandexn.1 |
⊢ ( 𝜑 ↔ ¬ 𝜓 ) |
2 |
1
|
exbii |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ¬ 𝜓 ) |
3 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ 𝜓 ↔ ¬ ∀ 𝑥 𝜓 ) |
4 |
2 3
|
bitri |
⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 𝜓 ) |