Metamath Proof Explorer


Theorem expandan

Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses expandan.1 ( 𝜑𝜓 )
expandan.2 ( 𝜒𝜃 )
Assertion expandan ( ( 𝜑𝜒 ) ↔ ¬ ( 𝜓 → ¬ 𝜃 ) )

Proof

Step Hyp Ref Expression
1 expandan.1 ( 𝜑𝜓 )
2 expandan.2 ( 𝜒𝜃 )
3 1 2 anbi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )
4 df-an ( ( 𝜓𝜃 ) ↔ ¬ ( 𝜓 → ¬ 𝜃 ) )
5 3 4 bitri ( ( 𝜑𝜒 ) ↔ ¬ ( 𝜓 → ¬ 𝜃 ) )