Description: Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expandan.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
expandan.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | ||
Assertion | expandan | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ¬ ( 𝜓 → ¬ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expandan.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
2 | expandan.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | |
3 | 1 2 | anbi12i | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
4 | df-an | ⊢ ( ( 𝜓 ∧ 𝜃 ) ↔ ¬ ( 𝜓 → ¬ 𝜃 ) ) | |
5 | 3 4 | bitri | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ¬ ( 𝜓 → ¬ 𝜃 ) ) |