Metamath Proof Explorer


Theorem expeq0d

Description: If a positive integer power is zero, then its base is zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
expeq0d.2 φN
expeq0d.3 φAN=0
Assertion expeq0d φA=0

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 expeq0d.2 φN
3 expeq0d.3 φAN=0
4 expeq0 ANAN=0A=0
5 1 2 4 syl2anc φAN=0A=0
6 3 5 mpbid φA=0