Metamath Proof Explorer


Theorem expmuld

Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
expcld.2 φN0
expaddd.2 φM0
Assertion expmuld φA M N=AMN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 expcld.2 φN0
3 expaddd.2 φM0
4 expmul AM0N0A M N=AMN
5 1 3 2 4 syl3anc φA M N=AMN