Metamath Proof Explorer


Theorem expp1zd

Description: Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
sqrecd.1 φA0
expclzd.3 φN
Assertion expp1zd φAN+1=ANA

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 sqrecd.1 φA0
3 expclzd.3 φN
4 expp1z AA0NAN+1=ANA
5 1 2 3 4 syl3anc φAN+1=ANA