Metamath Proof Explorer


Theorem expscl

Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025)

Ref Expression
Assertion expscl Could not format assertion : No typesetting found for |- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) with typecode |-

Proof

Step Hyp Ref Expression
1 ssid No No
2 mulscl x No y No x s y No
3 1sno 1 s No
4 1 2 3 expscllem Could not format ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) : No typesetting found for |- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) with typecode |-