Metamath Proof Explorer


Theorem f0dom0

Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019)

Ref Expression
Assertion f0dom0 F:XYX=F=

Proof

Step Hyp Ref Expression
1 feq2 X=F:XYF:Y
2 f0bi F:YF=
3 2 biimpi F:YF=
4 1 3 biimtrdi X=F:XYF=
5 4 com12 F:XYX=F=
6 feq1 F=F:XY:XY
7 fdm :XYdom=X
8 dm0 dom=
9 7 8 eqtr3di :XYX=
10 6 9 biimtrdi F=F:XYX=
11 10 com12 F:XYF=X=
12 5 11 impbid F:XYX=F=