Metamath Proof Explorer


Theorem f1od

Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Hypotheses f1od.1 F=xAC
f1od.2 φxACW
f1od.3 φyBDX
f1od.4 φxAy=CyBx=D
Assertion f1od φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 f1od.1 F=xAC
2 f1od.2 φxACW
3 f1od.3 φyBDX
4 f1od.4 φxAy=CyBx=D
5 1 2 3 4 f1ocnvd φF:A1-1 ontoBF-1=yBD
6 5 simpld φF:A1-1 ontoB