Metamath Proof Explorer


Theorem f1odm

Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014)

Ref Expression
Assertion f1odm F:A1-1 ontoBdomF=A

Proof

Step Hyp Ref Expression
1 f1ofn F:A1-1 ontoBFFnA
2 fndm FFnAdomF=A
3 1 2 syl F:A1-1 ontoBdomF=A