Metamath Proof Explorer


Theorem f1oeq3dd

Description: Equality deduction for one-to-one onto functions. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses f1oeq3dd.1 φ F : C 1-1 onto A
f1oeq3dd.2 φ A = B
Assertion f1oeq3dd φ F : C 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1oeq3dd.1 φ F : C 1-1 onto A
2 f1oeq3dd.2 φ A = B
3 2 f1oeq3d φ F : C 1-1 onto A F : C 1-1 onto B
4 1 3 mpbid φ F : C 1-1 onto B