Metamath Proof Explorer


Theorem f1oexbi

Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018)

Ref Expression
Assertion f1oexbi ff:A1-1 ontoBgg:B1-1 ontoA

Proof

Step Hyp Ref Expression
1 vex fV
2 1 cnvex f-1V
3 f1ocnv f:A1-1 ontoBf-1:B1-1 ontoA
4 f1oeq1 g=f-1g:B1-1 ontoAf-1:B1-1 ontoA
5 4 spcegv f-1Vf-1:B1-1 ontoAgg:B1-1 ontoA
6 2 3 5 mpsyl f:A1-1 ontoBgg:B1-1 ontoA
7 6 exlimiv ff:A1-1 ontoBgg:B1-1 ontoA
8 vex gV
9 8 cnvex g-1V
10 f1ocnv g:B1-1 ontoAg-1:A1-1 ontoB
11 f1oeq1 f=g-1f:A1-1 ontoBg-1:A1-1 ontoB
12 11 spcegv g-1Vg-1:A1-1 ontoBff:A1-1 ontoB
13 9 10 12 mpsyl g:B1-1 ontoAff:A1-1 ontoB
14 13 exlimiv gg:B1-1 ontoAff:A1-1 ontoB
15 7 14 impbii ff:A1-1 ontoBgg:B1-1 ontoA