Metamath Proof Explorer


Theorem f1opw

Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion f1opw F:A1-1 ontoBb𝒫AFb:𝒫A1-1 onto𝒫B

Proof

Step Hyp Ref Expression
1 id F:A1-1 ontoBF:A1-1 ontoB
2 dff1o3 F:A1-1 ontoBF:AontoBFunF-1
3 vex aV
4 3 funimaex FunF-1F-1aV
5 2 4 simplbiim F:A1-1 ontoBF-1aV
6 f1ofun F:A1-1 ontoBFunF
7 vex bV
8 7 funimaex FunFFbV
9 6 8 syl F:A1-1 ontoBFbV
10 1 5 9 f1opw2 F:A1-1 ontoBb𝒫AFb:𝒫A1-1 onto𝒫B