Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | f1opw | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
2 | dff1o3 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
3 | vex | ⊢ 𝑎 ∈ V | |
4 | 3 | funimaex | ⊢ ( Fun ◡ 𝐹 → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) |
5 | 2 4 | simplbiim | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) |
6 | f1ofun | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐹 ) | |
7 | vex | ⊢ 𝑏 ∈ V | |
8 | 7 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑏 ) ∈ V ) |
9 | 6 8 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐹 “ 𝑏 ) ∈ V ) |
10 | 1 5 9 | f1opw2 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐵 ) |