Metamath Proof Explorer


Theorem f1opw

Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion f1opw ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹𝑏 ) ) : 𝒫 𝐴1-1-onto→ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 id ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1-onto𝐵 )
2 dff1o3 ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴onto𝐵 ∧ Fun 𝐹 ) )
3 vex 𝑎 ∈ V
4 3 funimaex ( Fun 𝐹 → ( 𝐹𝑎 ) ∈ V )
5 2 4 simplbiim ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹𝑎 ) ∈ V )
6 f1ofun ( 𝐹 : 𝐴1-1-onto𝐵 → Fun 𝐹 )
7 vex 𝑏 ∈ V
8 7 funimaex ( Fun 𝐹 → ( 𝐹𝑏 ) ∈ V )
9 6 8 syl ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝐹𝑏 ) ∈ V )
10 1 5 9 f1opw2 ( 𝐹 : 𝐴1-1-onto𝐵 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹𝑏 ) ) : 𝒫 𝐴1-1-onto→ 𝒫 𝐵 )