| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1opw2.1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							f1opw2.2 | 
							⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑎 )  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							f1opw2.3 | 
							⊢ ( 𝜑  →  ( 𝐹  “  𝑏 )  ∈  V )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑏  ∈  𝒫  𝐴  ↦  ( 𝐹  “  𝑏 ) )  =  ( 𝑏  ∈  𝒫  𝐴  ↦  ( 𝐹  “  𝑏 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝐹  “  𝑏 )  ⊆  ran  𝐹  | 
						
						
							| 6 | 
							
								
							 | 
							f1ofo | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –onto→ 𝐵 )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 –onto→ 𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							forn | 
							⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  →  ran  𝐹  =  𝐵 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( 𝜑  →  ran  𝐹  =  𝐵 )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							sseqtrid | 
							⊢ ( 𝜑  →  ( 𝐹  “  𝑏 )  ⊆  𝐵 )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							elpwd | 
							⊢ ( 𝜑  →  ( 𝐹  “  𝑏 )  ∈  𝒫  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( 𝐹  “  𝑏 )  ∈  𝒫  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							imassrn | 
							⊢ ( ◡ 𝐹  “  𝑎 )  ⊆  ran  ◡ 𝐹  | 
						
						
							| 14 | 
							
								
							 | 
							dfdm4 | 
							⊢ dom  𝐹  =  ran  ◡ 𝐹  | 
						
						
							| 15 | 
							
								
							 | 
							f1odm | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  dom  𝐹  =  𝐴 )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							syl | 
							⊢ ( 𝜑  →  dom  𝐹  =  𝐴 )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqtr3id | 
							⊢ ( 𝜑  →  ran  ◡ 𝐹  =  𝐴 )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							sseqtrid | 
							⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑎 )  ⊆  𝐴 )  | 
						
						
							| 19 | 
							
								2 18
							 | 
							elpwd | 
							⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑎 )  ∈  𝒫  𝐴 )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  →  ( ◡ 𝐹  “  𝑎 )  ∈  𝒫  𝐴 )  | 
						
						
							| 21 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑎  ∈  𝒫  𝐵  →  𝑎  ⊆  𝐵 )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantl | 
							⊢ ( ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 )  →  𝑎  ⊆  𝐵 )  | 
						
						
							| 23 | 
							
								
							 | 
							foimacnv | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑎 ) )  =  𝑎 )  | 
						
						
							| 24 | 
							
								7 22 23
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑎 ) )  =  𝑎 )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  𝑎  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑎 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑏  =  ( ◡ 𝐹  “  𝑎 )  →  ( 𝐹  “  𝑏 )  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑎 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							eqeq2d | 
							⊢ ( 𝑏  =  ( ◡ 𝐹  “  𝑎 )  →  ( 𝑎  =  ( 𝐹  “  𝑏 )  ↔  𝑎  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑎 ) ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  ( 𝑏  =  ( ◡ 𝐹  “  𝑎 )  →  𝑎  =  ( 𝐹  “  𝑏 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							f1of1 | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 30 | 
							
								1 29
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 31 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑏  ∈  𝒫  𝐴  →  𝑏  ⊆  𝐴 )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 )  →  𝑏  ⊆  𝐴 )  | 
						
						
							| 33 | 
							
								
							 | 
							f1imacnv | 
							⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑏  ⊆  𝐴 )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑏 ) )  =  𝑏 )  | 
						
						
							| 34 | 
							
								30 32 33
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑏 ) )  =  𝑏 )  | 
						
						
							| 35 | 
							
								34
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  𝑏  =  ( ◡ 𝐹  “  ( 𝐹  “  𝑏 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑎  =  ( 𝐹  “  𝑏 )  →  ( ◡ 𝐹  “  𝑎 )  =  ( ◡ 𝐹  “  ( 𝐹  “  𝑏 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq2d | 
							⊢ ( 𝑎  =  ( 𝐹  “  𝑏 )  →  ( 𝑏  =  ( ◡ 𝐹  “  𝑎 )  ↔  𝑏  =  ( ◡ 𝐹  “  ( 𝐹  “  𝑏 ) ) ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  ( 𝑎  =  ( 𝐹  “  𝑏 )  →  𝑏  =  ( ◡ 𝐹  “  𝑎 ) ) )  | 
						
						
							| 39 | 
							
								28 38
							 | 
							impbid | 
							⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐵 ) )  →  ( 𝑏  =  ( ◡ 𝐹  “  𝑎 )  ↔  𝑎  =  ( 𝐹  “  𝑏 ) ) )  | 
						
						
							| 40 | 
							
								4 12 20 39
							 | 
							f1o2d | 
							⊢ ( 𝜑  →  ( 𝑏  ∈  𝒫  𝐴  ↦  ( 𝐹  “  𝑏 ) ) : 𝒫  𝐴 –1-1-onto→ 𝒫  𝐵 )  |