Metamath Proof Explorer


Theorem f1ores

Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998)

Ref Expression
Assertion f1ores F:A1-1BCAFC:C1-1 ontoFC

Proof

Step Hyp Ref Expression
1 f1ssres F:A1-1BCAFC:C1-1B
2 f1f1orn FC:C1-1BFC:C1-1 ontoranFC
3 1 2 syl F:A1-1BCAFC:C1-1 ontoranFC
4 df-ima FC=ranFC
5 f1oeq3 FC=ranFCFC:C1-1 ontoFCFC:C1-1 ontoranFC
6 4 5 ax-mp FC:C1-1 ontoFCFC:C1-1 ontoranFC
7 3 6 sylibr F:A1-1BCAFC:C1-1 ontoFC