Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Functions f1osn  
				
		 
		
			
		 
		Description:   A singleton of an ordered pair is one-to-one onto function.
       (Contributed by NM , 18-May-1998)   (Proof shortened by Andrew Salmon , 22-Oct-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						f1osn.1   ⊢   A  ∈  V       
					 
					
						f1osn.2   ⊢   B  ∈  V       
					 
				
					Assertion 
					f1osn   ⊢     A  B      :   A    ⟶  1-1 onto  B         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							f1osn.1  ⊢   A  ∈  V       
						
							2 
								
							 
							f1osn.2  ⊢   B  ∈  V       
						
							3 
								1  2 
							 
							fnsn  ⊢     A  B      Fn   A         
						
							4 
								2  1 
							 
							fnsn  ⊢     B  A      Fn   B         
						
							5 
								1  2 
							 
							cnvsn  ⊢      A  B      -1    =    B  A           
						
							6 
								5 
							 
							fneq1i   ⊢      A  B      -1    Fn   B      ↔     B  A      Fn   B           
						
							7 
								4  6 
							 
							mpbir  ⊢      A  B      -1    Fn   B         
						
							8 
								
							 
							dff1o4   ⊢     A  B      :   A    ⟶  1-1 onto  B      ↔      A  B      Fn   A      ∧      A  B      -1    Fn   B            
						
							9 
								3  7  8 
							 
							mpbir2an  ⊢     A  B      :   A    ⟶  1-1 onto  B