Metamath Proof Explorer


Theorem fabex

Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007)

Ref Expression
Hypotheses fabex.1 AV
fabex.2 BV
fabex.3 F=x|x:ABφ
Assertion fabex FV

Proof

Step Hyp Ref Expression
1 fabex.1 AV
2 fabex.2 BV
3 fabex.3 F=x|x:ABφ
4 3 fabexg AVBVFV
5 1 2 4 mp2an FV