Metamath Proof Explorer


Theorem fabexg

Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008)

Ref Expression
Hypothesis fabexg.1 F = x | x : A B φ
Assertion fabexg A C B D F V

Proof

Step Hyp Ref Expression
1 fabexg.1 F = x | x : A B φ
2 xpexg A C B D A × B V
3 pwexg A × B V 𝒫 A × B V
4 fssxp x : A B x A × B
5 velpw x 𝒫 A × B x A × B
6 4 5 sylibr x : A B x 𝒫 A × B
7 6 anim1i x : A B φ x 𝒫 A × B φ
8 7 ss2abi x | x : A B φ x | x 𝒫 A × B φ
9 1 8 eqsstri F x | x 𝒫 A × B φ
10 ssab2 x | x 𝒫 A × B φ 𝒫 A × B
11 9 10 sstri F 𝒫 A × B
12 ssexg F 𝒫 A × B 𝒫 A × B V F V
13 11 12 mpan 𝒫 A × B V F V
14 2 3 13 3syl A C B D F V