Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Relations and functions (cont.)
fabexg
Next ⟩
fabex
Metamath Proof Explorer
Ascii
Unicode
Theorem
fabexg
Description:
Existence of a set of functions.
(Contributed by
Paul Chapman
, 25-Feb-2008)
Ref
Expression
Hypothesis
fabexg.1
⊢
F
=
x
|
x
:
A
⟶
B
∧
φ
Assertion
fabexg
⊢
A
∈
C
∧
B
∈
D
→
F
∈
V
Proof
Step
Hyp
Ref
Expression
1
fabexg.1
⊢
F
=
x
|
x
:
A
⟶
B
∧
φ
2
xpexg
⊢
A
∈
C
∧
B
∈
D
→
A
×
B
∈
V
3
pwexg
⊢
A
×
B
∈
V
→
𝒫
A
×
B
∈
V
4
fssxp
⊢
x
:
A
⟶
B
→
x
⊆
A
×
B
5
velpw
⊢
x
∈
𝒫
A
×
B
↔
x
⊆
A
×
B
6
4
5
sylibr
⊢
x
:
A
⟶
B
→
x
∈
𝒫
A
×
B
7
6
anim1i
⊢
x
:
A
⟶
B
∧
φ
→
x
∈
𝒫
A
×
B
∧
φ
8
7
ss2abi
⊢
x
|
x
:
A
⟶
B
∧
φ
⊆
x
|
x
∈
𝒫
A
×
B
∧
φ
9
1
8
eqsstri
⊢
F
⊆
x
|
x
∈
𝒫
A
×
B
∧
φ
10
ssab2
⊢
x
|
x
∈
𝒫
A
×
B
∧
φ
⊆
𝒫
A
×
B
11
9
10
sstri
⊢
F
⊆
𝒫
A
×
B
12
ssexg
⊢
F
⊆
𝒫
A
×
B
∧
𝒫
A
×
B
∈
V
→
F
∈
V
13
11
12
mpan
⊢
𝒫
A
×
B
∈
V
→
F
∈
V
14
2
3
13
3syl
⊢
A
∈
C
∧
B
∈
D
→
F
∈
V