Step |
Hyp |
Ref |
Expression |
1 |
|
fabexg.1 |
|- F = { x | ( x : A --> B /\ ph ) } |
2 |
|
xpexg |
|- ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) |
3 |
|
pwexg |
|- ( ( A X. B ) e. _V -> ~P ( A X. B ) e. _V ) |
4 |
|
fssxp |
|- ( x : A --> B -> x C_ ( A X. B ) ) |
5 |
|
velpw |
|- ( x e. ~P ( A X. B ) <-> x C_ ( A X. B ) ) |
6 |
4 5
|
sylibr |
|- ( x : A --> B -> x e. ~P ( A X. B ) ) |
7 |
6
|
anim1i |
|- ( ( x : A --> B /\ ph ) -> ( x e. ~P ( A X. B ) /\ ph ) ) |
8 |
7
|
ss2abi |
|- { x | ( x : A --> B /\ ph ) } C_ { x | ( x e. ~P ( A X. B ) /\ ph ) } |
9 |
1 8
|
eqsstri |
|- F C_ { x | ( x e. ~P ( A X. B ) /\ ph ) } |
10 |
|
ssab2 |
|- { x | ( x e. ~P ( A X. B ) /\ ph ) } C_ ~P ( A X. B ) |
11 |
9 10
|
sstri |
|- F C_ ~P ( A X. B ) |
12 |
|
ssexg |
|- ( ( F C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> F e. _V ) |
13 |
11 12
|
mpan |
|- ( ~P ( A X. B ) e. _V -> F e. _V ) |
14 |
2 3 13
|
3syl |
|- ( ( A e. C /\ B e. D ) -> F e. _V ) |