Metamath Proof Explorer


Theorem fabexg

Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008)

Ref Expression
Hypothesis fabexg.1
|- F = { x | ( x : A --> B /\ ph ) }
Assertion fabexg
|- ( ( A e. C /\ B e. D ) -> F e. _V )

Proof

Step Hyp Ref Expression
1 fabexg.1
 |-  F = { x | ( x : A --> B /\ ph ) }
2 xpexg
 |-  ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V )
3 pwexg
 |-  ( ( A X. B ) e. _V -> ~P ( A X. B ) e. _V )
4 fssxp
 |-  ( x : A --> B -> x C_ ( A X. B ) )
5 velpw
 |-  ( x e. ~P ( A X. B ) <-> x C_ ( A X. B ) )
6 4 5 sylibr
 |-  ( x : A --> B -> x e. ~P ( A X. B ) )
7 6 anim1i
 |-  ( ( x : A --> B /\ ph ) -> ( x e. ~P ( A X. B ) /\ ph ) )
8 7 ss2abi
 |-  { x | ( x : A --> B /\ ph ) } C_ { x | ( x e. ~P ( A X. B ) /\ ph ) }
9 1 8 eqsstri
 |-  F C_ { x | ( x e. ~P ( A X. B ) /\ ph ) }
10 ssab2
 |-  { x | ( x e. ~P ( A X. B ) /\ ph ) } C_ ~P ( A X. B )
11 9 10 sstri
 |-  F C_ ~P ( A X. B )
12 ssexg
 |-  ( ( F C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> F e. _V )
13 11 12 mpan
 |-  ( ~P ( A X. B ) e. _V -> F e. _V )
14 2 3 13 3syl
 |-  ( ( A e. C /\ B e. D ) -> F e. _V )