Metamath Proof Explorer


Theorem f1oabexg

Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008)

Ref Expression
Hypothesis f1oabexg.1 F = f | f : A 1-1 onto B φ
Assertion f1oabexg A C B D F V

Proof

Step Hyp Ref Expression
1 f1oabexg.1 F = f | f : A 1-1 onto B φ
2 f1of f : A 1-1 onto B f : A B
3 2 anim1i f : A 1-1 onto B φ f : A B φ
4 3 ss2abi f | f : A 1-1 onto B φ f | f : A B φ
5 eqid f | f : A B φ = f | f : A B φ
6 5 fabexg A C B D f | f : A B φ V
7 ssexg f | f : A 1-1 onto B φ f | f : A B φ f | f : A B φ V f | f : A 1-1 onto B φ V
8 4 6 7 sylancr A C B D f | f : A 1-1 onto B φ V
9 1 8 eqeltrid A C B D F V