Metamath Proof Explorer


Theorem f1oabexg

Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008)

Ref Expression
Hypothesis f1oabexg.1 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) }
Assertion f1oabexg ( ( 𝐴𝐶𝐵𝐷 ) → 𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 f1oabexg.1 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) }
2 f1of ( 𝑓 : 𝐴1-1-onto𝐵𝑓 : 𝐴𝐵 )
3 2 anim1i ( ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) → ( 𝑓 : 𝐴𝐵𝜑 ) )
4 3 ss2abi { 𝑓 ∣ ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) } ⊆ { 𝑓 ∣ ( 𝑓 : 𝐴𝐵𝜑 ) }
5 eqid { 𝑓 ∣ ( 𝑓 : 𝐴𝐵𝜑 ) } = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵𝜑 ) }
6 5 fabexg ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓 ∣ ( 𝑓 : 𝐴𝐵𝜑 ) } ∈ V )
7 ssexg ( ( { 𝑓 ∣ ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) } ⊆ { 𝑓 ∣ ( 𝑓 : 𝐴𝐵𝜑 ) } ∧ { 𝑓 ∣ ( 𝑓 : 𝐴𝐵𝜑 ) } ∈ V ) → { 𝑓 ∣ ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) } ∈ V )
8 4 6 7 sylancr ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓 ∣ ( 𝑓 : 𝐴1-1-onto𝐵𝜑 ) } ∈ V )
9 1 8 eqeltrid ( ( 𝐴𝐶𝐵𝐷 ) → 𝐹 ∈ V )