Metamath Proof Explorer


Theorem facnn

Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion facnn NN!=seq1×IN

Proof

Step Hyp Ref Expression
1 c0ex 0V
2 1 a1i N000V
3 1ex 1V
4 3 a1i N001V
5 df-fac !=01seq1×I
6 nnuz =1
7 dfn2 =00
8 6 7 eqtr3i 1=00
9 8 reseq2i seq1×I1=seq1×I00
10 1z 1
11 seqfn 1seq1×IFn1
12 fnresdm seq1×IFn1seq1×I1=seq1×I
13 10 11 12 mp2b seq1×I1=seq1×I
14 9 13 eqtr3i seq1×I00=seq1×I
15 14 uneq2i 01seq1×I00=01seq1×I
16 5 15 eqtr4i !=01seq1×I00
17 id N00N00
18 2 4 16 17 fvsnun2 N00N!=seq1×IN
19 18 7 eleq2s NN!=seq1×IN