Metamath Proof Explorer


Theorem fbasne0

Description: There are no empty filter bases. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion fbasne0 FfBasBF

Proof

Step Hyp Ref Expression
1 elfvdm FfBasBBdomfBas
2 isfbas BdomfBasFfBasBF𝒫BFFxFyFF𝒫xy
3 1 2 syl FfBasBFfBasBF𝒫BFFxFyFF𝒫xy
4 3 ibi FfBasBF𝒫BFFxFyFF𝒫xy
5 simpr1 F𝒫BFFxFyFF𝒫xyF
6 4 5 syl FfBasBF