Metamath Proof Explorer


Theorem ffs2

Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypothesis ffs2.1 C=BZ
Assertion ffs2 AVZWF:ABFsuppZ=F-1C

Proof

Step Hyp Ref Expression
1 ffs2.1 C=BZ
2 fsuppeq AVZWF:ABFsuppZ=F-1BZ
3 2 3impia AVZWF:ABFsuppZ=F-1BZ
4 1 imaeq2i F-1C=F-1BZ
5 3 4 eqtr4di AVZWF:ABFsuppZ=F-1C