Metamath Proof Explorer


Theorem ffsrn

Description: The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017)

Ref Expression
Hypotheses ffsrn.z φ Z W
ffsrn.0 φ F V
ffsrn.1 φ Fun F
ffsrn.2 φ F supp Z Fin
Assertion ffsrn φ ran F Fin

Proof

Step Hyp Ref Expression
1 ffsrn.z φ Z W
2 ffsrn.0 φ F V
3 ffsrn.1 φ Fun F
4 ffsrn.2 φ F supp Z Fin
5 imaundi F -1 V Z Z = F -1 V Z F -1 Z
6 5 reseq2i F F -1 V Z Z = F F -1 V Z F -1 Z
7 undif1 V Z Z = V Z
8 ssv Z V
9 ssequn2 Z V V Z = V
10 8 9 mpbi V Z = V
11 7 10 eqtri V Z Z = V
12 11 imaeq2i F -1 V Z Z = F -1 V
13 12 reseq2i F F -1 V Z Z = F F -1 V
14 resundi F F -1 V Z F -1 Z = F F -1 V Z F F -1 Z
15 6 13 14 3eqtr3i F F -1 V = F F -1 V Z F F -1 Z
16 dfdm4 dom F = ran F -1
17 dfrn4 ran F -1 = F -1 V
18 16 17 eqtri dom F = F -1 V
19 df-fn F Fn F -1 V Fun F dom F = F -1 V
20 fnresdm F Fn F -1 V F F -1 V = F
21 19 20 sylbir Fun F dom F = F -1 V F F -1 V = F
22 3 18 21 sylancl φ F F -1 V = F
23 15 22 syl5reqr φ F = F F -1 V Z F F -1 Z
24 23 rneqd φ ran F = ran F F -1 V Z F F -1 Z
25 rnun ran F F -1 V Z F F -1 Z = ran F F -1 V Z ran F F -1 Z
26 24 25 syl6eq φ ran F = ran F F -1 V Z ran F F -1 Z
27 suppimacnv F V Z W F supp Z = F -1 V Z
28 2 1 27 syl2anc φ F supp Z = F -1 V Z
29 28 4 eqeltrrd φ F -1 V Z Fin
30 cnvexg F V F -1 V
31 imaexg F -1 V F -1 V Z V
32 2 30 31 3syl φ F -1 V Z V
33 cnvimass F -1 V Z dom F
34 fores Fun F F -1 V Z dom F F F -1 V Z : F -1 V Z onto F F -1 V Z
35 3 33 34 sylancl φ F F -1 V Z : F -1 V Z onto F F -1 V Z
36 fofn F F -1 V Z : F -1 V Z onto F F -1 V Z F F -1 V Z Fn F -1 V Z
37 35 36 syl φ F F -1 V Z Fn F -1 V Z
38 fnrndomg F -1 V Z V F F -1 V Z Fn F -1 V Z ran F F -1 V Z F -1 V Z
39 32 37 38 sylc φ ran F F -1 V Z F -1 V Z
40 domfi F -1 V Z Fin ran F F -1 V Z F -1 V Z ran F F -1 V Z Fin
41 29 39 40 syl2anc φ ran F F -1 V Z Fin
42 snfi Z Fin
43 df-ima F F -1 Z = ran F F -1 Z
44 funimacnv Fun F F F -1 Z = Z ran F
45 3 44 syl φ F F -1 Z = Z ran F
46 43 45 syl5eqr φ ran F F -1 Z = Z ran F
47 inss1 Z ran F Z
48 46 47 eqsstrdi φ ran F F -1 Z Z
49 ssfi Z Fin ran F F -1 Z Z ran F F -1 Z Fin
50 42 48 49 sylancr φ ran F F -1 Z Fin
51 unfi ran F F -1 V Z Fin ran F F -1 Z Fin ran F F -1 V Z ran F F -1 Z Fin
52 41 50 51 syl2anc φ ran F F -1 V Z ran F F -1 Z Fin
53 26 52 eqeltrd φ ran F Fin