Metamath Proof Explorer


Theorem ffthoppf

Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025)

Ref Expression
Hypotheses fulloppf.o O = oppCat C
fulloppf.p P = oppCat D
ffthoppf.f φ F C Full D C Faith D
Assertion ffthoppf Could not format assertion : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fulloppf.o O = oppCat C
2 fulloppf.p P = oppCat D
3 ffthoppf.f φ F C Full D C Faith D
4 3 elin1d φ F C Full D
5 1 2 4 fulloppf Could not format ( ph -> ( oppFunc ` F ) e. ( O Full P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Full P ) ) with typecode |-
6 3 elin2d φ F C Faith D
7 1 2 6 fthoppf Could not format ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) with typecode |-
8 5 7 elind Could not format ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) ) with typecode |-