Metamath Proof Explorer


Theorem fge0icoicc

Description: If F maps to nonnegative reals, then F maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis fge0icoicc.1 φF:X0+∞
Assertion fge0icoicc φF:X0+∞

Proof

Step Hyp Ref Expression
1 fge0icoicc.1 φF:X0+∞
2 icossicc 0+∞0+∞
3 2 a1i φ0+∞0+∞
4 1 3 fssd φF:X0+∞