Metamath Proof Explorer


Theorem fidomtri2

Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion fidomtri2 AVBFinAB¬BA

Proof

Step Hyp Ref Expression
1 domnsym AB¬BA
2 sdomdom ABAB
3 2 con3i ¬AB¬AB
4 fidomtri BFinAVBA¬AB
5 4 ancoms AVBFinBA¬AB
6 3 5 imbitrrid AVBFin¬ABBA
7 ensym BAAB
8 endom ABAB
9 7 8 syl BAAB
10 9 con3i ¬AB¬BA
11 6 10 jca2 AVBFin¬ABBA¬BA
12 brsdom BABA¬BA
13 11 12 syl6ibr AVBFin¬ABBA
14 13 con1d AVBFin¬BAAB
15 1 14 impbid2 AVBFinAB¬BA