Metamath Proof Explorer


Theorem fidomtri

Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion fidomtri AFinBVAB¬BA

Proof

Step Hyp Ref Expression
1 domnsym AB¬BA
2 finnum AFinAdomcard
3 2 adantr AFinBVAdomcard
4 finnum BFinBdomcard
5 domtri2 AdomcardBdomcardAB¬BA
6 3 4 5 syl2an AFinBVBFinAB¬BA
7 6 biimprd AFinBVBFin¬BAAB
8 isinffi ¬BFinAFinaa:A1-1B
9 8 ancoms AFin¬BFinaa:A1-1B
10 9 adantlr AFinBV¬BFinaa:A1-1B
11 brdomg BVABaa:A1-1B
12 11 ad2antlr AFinBV¬BFinABaa:A1-1B
13 10 12 mpbird AFinBV¬BFinAB
14 13 a1d AFinBV¬BFin¬BAAB
15 7 14 pm2.61dan AFinBV¬BAAB
16 1 15 impbid2 AFinBVAB¬BA