Metamath Proof Explorer


Theorem fiidomfld

Description: A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis fidomndrng.b B=BaseR
Assertion fiidomfld BFinRIDomnRField

Proof

Step Hyp Ref Expression
1 fidomndrng.b B=BaseR
2 1 fidomndrng BFinRDomnRDivRing
3 2 anbi2d BFinRCRingRDomnRCRingRDivRing
4 isidom RIDomnRCRingRDomn
5 isfld RFieldRDivRingRCRing
6 5 biancomi RFieldRCRingRDivRing
7 3 4 6 3bitr4g BFinRIDomnRField