Metamath Proof Explorer


Theorem fin34

Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion fin34 AFinIIIAFinIV

Proof

Step Hyp Ref Expression
1 isfin3 AFinIII𝒫AFinIV
2 isfin4-2 𝒫AFinIV𝒫AFinIV¬ω𝒫A
3 2 ibi 𝒫AFinIV¬ω𝒫A
4 reldom Rel
5 4 brrelex2i ωAAV
6 canth2g AVA𝒫A
7 5 6 syl ωAA𝒫A
8 domsdomtr ωAA𝒫Aω𝒫A
9 7 8 mpdan ωAω𝒫A
10 sdomdom ω𝒫Aω𝒫A
11 9 10 syl ωAω𝒫A
12 3 11 nsyl 𝒫AFinIV¬ωA
13 1 12 sylbi AFinIII¬ωA
14 isfin4-2 AFinIIIAFinIV¬ωA
15 13 14 mpbird AFinIIIAFinIV