Metamath Proof Explorer


Theorem fixcnv

Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fixcnv 𝖥𝗂𝗑A=𝖥𝗂𝗑A-1

Proof

Step Hyp Ref Expression
1 vex xV
2 1 1 brcnv xA-1xxAx
3 1 elfix x𝖥𝗂𝗑A-1xA-1x
4 1 elfix x𝖥𝗂𝗑AxAx
5 2 3 4 3bitr4ri x𝖥𝗂𝗑Ax𝖥𝗂𝗑A-1
6 5 eqriv 𝖥𝗂𝗑A=𝖥𝗂𝗑A-1