Metamath Proof Explorer
		
		
		
		Description:  The fixpoints of a class are the same as those of its converse.
       (Contributed by Scott Fenton, 16-Apr-2012)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | fixcnv | ⊢   Fix  𝐴  =   Fix  ◡ 𝐴 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 2 | 1 1 | brcnv | ⊢ ( 𝑥 ◡ 𝐴 𝑥  ↔  𝑥 𝐴 𝑥 ) | 
						
							| 3 | 1 | elfix | ⊢ ( 𝑥  ∈   Fix  ◡ 𝐴  ↔  𝑥 ◡ 𝐴 𝑥 ) | 
						
							| 4 | 1 | elfix | ⊢ ( 𝑥  ∈   Fix  𝐴  ↔  𝑥 𝐴 𝑥 ) | 
						
							| 5 | 2 3 4 | 3bitr4ri | ⊢ ( 𝑥  ∈   Fix  𝐴  ↔  𝑥  ∈   Fix  ◡ 𝐴 ) | 
						
							| 6 | 5 | eqriv | ⊢  Fix  𝐴  =   Fix  ◡ 𝐴 |