Metamath Proof Explorer
Description: The fixpoints of a class are the same as those of its converse.
(Contributed by Scott Fenton, 16-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
fixcnv |
⊢ Fix 𝐴 = Fix ◡ 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
1 1
|
brcnv |
⊢ ( 𝑥 ◡ 𝐴 𝑥 ↔ 𝑥 𝐴 𝑥 ) |
3 |
1
|
elfix |
⊢ ( 𝑥 ∈ Fix ◡ 𝐴 ↔ 𝑥 ◡ 𝐴 𝑥 ) |
4 |
1
|
elfix |
⊢ ( 𝑥 ∈ Fix 𝐴 ↔ 𝑥 𝐴 𝑥 ) |
5 |
2 3 4
|
3bitr4ri |
⊢ ( 𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ Fix ◡ 𝐴 ) |
6 |
5
|
eqriv |
⊢ Fix 𝐴 = Fix ◡ 𝐴 |