Metamath Proof Explorer


Theorem fixcnv

Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fixcnv Fix 𝐴 = Fix 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 1 brcnv ( 𝑥 𝐴 𝑥𝑥 𝐴 𝑥 )
3 1 elfix ( 𝑥 Fix 𝐴𝑥 𝐴 𝑥 )
4 1 elfix ( 𝑥 Fix 𝐴𝑥 𝐴 𝑥 )
5 2 3 4 3bitr4ri ( 𝑥 Fix 𝐴𝑥 Fix 𝐴 )
6 5 eqriv Fix 𝐴 = Fix 𝐴