Step |
Hyp |
Ref |
Expression |
1 |
|
elfix.1 |
⊢ 𝐴 ∈ V |
2 |
|
df-fix |
⊢ Fix 𝑅 = dom ( 𝑅 ∩ I ) |
3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 ∈ dom ( 𝑅 ∩ I ) ) |
4 |
1
|
eldm |
⊢ ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ) |
5 |
|
brin |
⊢ ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 I 𝑥 ) ) |
6 |
|
ancom |
⊢ ( ( 𝐴 𝑅 𝑥 ∧ 𝐴 I 𝑥 ) ↔ ( 𝐴 I 𝑥 ∧ 𝐴 𝑅 𝑥 ) ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
ideq |
⊢ ( 𝐴 I 𝑥 ↔ 𝐴 = 𝑥 ) |
9 |
|
eqcom |
⊢ ( 𝐴 = 𝑥 ↔ 𝑥 = 𝐴 ) |
10 |
8 9
|
bitri |
⊢ ( 𝐴 I 𝑥 ↔ 𝑥 = 𝐴 ) |
11 |
10
|
anbi1i |
⊢ ( ( 𝐴 I 𝑥 ∧ 𝐴 𝑅 𝑥 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
12 |
5 6 11
|
3bitri |
⊢ ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
14 |
4 13
|
bitri |
⊢ ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
15 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) |
16 |
1 15
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐴 ) |
17 |
3 14 16
|
3bitri |
⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) |