| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfix.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
df-fix |
⊢ Fix 𝑅 = dom ( 𝑅 ∩ I ) |
| 3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 ∈ dom ( 𝑅 ∩ I ) ) |
| 4 |
1
|
eldm |
⊢ ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ) |
| 5 |
|
brin |
⊢ ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 I 𝑥 ) ) |
| 6 |
|
ancom |
⊢ ( ( 𝐴 𝑅 𝑥 ∧ 𝐴 I 𝑥 ) ↔ ( 𝐴 I 𝑥 ∧ 𝐴 𝑅 𝑥 ) ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7
|
ideq |
⊢ ( 𝐴 I 𝑥 ↔ 𝐴 = 𝑥 ) |
| 9 |
|
eqcom |
⊢ ( 𝐴 = 𝑥 ↔ 𝑥 = 𝐴 ) |
| 10 |
8 9
|
bitri |
⊢ ( 𝐴 I 𝑥 ↔ 𝑥 = 𝐴 ) |
| 11 |
10
|
anbi1i |
⊢ ( ( 𝐴 I 𝑥 ∧ 𝐴 𝑅 𝑥 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 12 |
5 6 11
|
3bitri |
⊢ ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 13 |
12
|
exbii |
⊢ ( ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 14 |
4 13
|
bitri |
⊢ ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 15 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) |
| 16 |
1 15
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐴 ) |
| 17 |
3 14 16
|
3bitri |
⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) |