Metamath Proof Explorer


Theorem elfix

Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis elfix.1 𝐴 ∈ V
Assertion elfix ( 𝐴 Fix 𝑅𝐴 𝑅 𝐴 )

Proof

Step Hyp Ref Expression
1 elfix.1 𝐴 ∈ V
2 df-fix Fix 𝑅 = dom ( 𝑅 ∩ I )
3 2 eleq2i ( 𝐴 Fix 𝑅𝐴 ∈ dom ( 𝑅 ∩ I ) )
4 1 eldm ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 )
5 brin ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝐴 𝑅 𝑥𝐴 I 𝑥 ) )
6 ancom ( ( 𝐴 𝑅 𝑥𝐴 I 𝑥 ) ↔ ( 𝐴 I 𝑥𝐴 𝑅 𝑥 ) )
7 vex 𝑥 ∈ V
8 7 ideq ( 𝐴 I 𝑥𝐴 = 𝑥 )
9 eqcom ( 𝐴 = 𝑥𝑥 = 𝐴 )
10 8 9 bitri ( 𝐴 I 𝑥𝑥 = 𝐴 )
11 10 anbi1i ( ( 𝐴 I 𝑥𝐴 𝑅 𝑥 ) ↔ ( 𝑥 = 𝐴𝐴 𝑅 𝑥 ) )
12 5 6 11 3bitri ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝑥 = 𝐴𝐴 𝑅 𝑥 ) )
13 12 exbii ( ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝐴 𝑅 𝑥 ) )
14 4 13 bitri ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝐴 𝑅 𝑥 ) )
15 breq2 ( 𝑥 = 𝐴 → ( 𝐴 𝑅 𝑥𝐴 𝑅 𝐴 ) )
16 1 15 ceqsexv ( ∃ 𝑥 ( 𝑥 = 𝐴𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐴 )
17 3 14 16 3bitri ( 𝐴 Fix 𝑅𝐴 𝑅 𝐴 )