Metamath Proof Explorer


Theorem elfix2

Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis elfix2.1 Rel 𝑅
Assertion elfix2 ( 𝐴 Fix 𝑅𝐴 𝑅 𝐴 )

Proof

Step Hyp Ref Expression
1 elfix2.1 Rel 𝑅
2 elex ( 𝐴 Fix 𝑅𝐴 ∈ V )
3 1 brrelex1i ( 𝐴 𝑅 𝐴𝐴 ∈ V )
4 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 Fix 𝑅𝐴 Fix 𝑅 ) )
5 breq12 ( ( 𝑥 = 𝐴𝑥 = 𝐴 ) → ( 𝑥 𝑅 𝑥𝐴 𝑅 𝐴 ) )
6 5 anidms ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑥𝐴 𝑅 𝐴 ) )
7 vex 𝑥 ∈ V
8 7 elfix ( 𝑥 Fix 𝑅𝑥 𝑅 𝑥 )
9 4 6 8 vtoclbg ( 𝐴 ∈ V → ( 𝐴 Fix 𝑅𝐴 𝑅 𝐴 ) )
10 2 3 9 pm5.21nii ( 𝐴 Fix 𝑅𝐴 𝑅 𝐴 )