Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elfix2.1 | ⊢ Rel 𝑅 | |
Assertion | elfix2 | ⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfix2.1 | ⊢ Rel 𝑅 | |
2 | elex | ⊢ ( 𝐴 ∈ Fix 𝑅 → 𝐴 ∈ V ) | |
3 | 1 | brrelex1i | ⊢ ( 𝐴 𝑅 𝐴 → 𝐴 ∈ V ) |
4 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Fix 𝑅 ↔ 𝐴 ∈ Fix 𝑅 ) ) | |
5 | breq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) | |
6 | 5 | anidms | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) |
7 | vex | ⊢ 𝑥 ∈ V | |
8 | 7 | elfix | ⊢ ( 𝑥 ∈ Fix 𝑅 ↔ 𝑥 𝑅 𝑥 ) |
9 | 4 6 8 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) |
10 | 2 3 9 | pm5.21nii | ⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) |