Metamath Proof Explorer


Theorem elfix2

Description: Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis elfix2.1 Rel R
Assertion elfix2 A 𝖥𝗂𝗑 R A R A

Proof

Step Hyp Ref Expression
1 elfix2.1 Rel R
2 elex A 𝖥𝗂𝗑 R A V
3 1 brrelex1i A R A A V
4 eleq1 x = A x 𝖥𝗂𝗑 R A 𝖥𝗂𝗑 R
5 breq12 x = A x = A x R x A R A
6 5 anidms x = A x R x A R A
7 vex x V
8 7 elfix x 𝖥𝗂𝗑 R x R x
9 4 6 8 vtoclbg A V A 𝖥𝗂𝗑 R A R A
10 2 3 9 pm5.21nii A 𝖥𝗂𝗑 R A R A