Metamath Proof Explorer


Theorem dffix2

Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion dffix2 𝖥𝗂𝗑 A = ran A I

Proof

Step Hyp Ref Expression
1 vex x V
2 1 elfix x 𝖥𝗂𝗑 A x A x
3 1 elrn x ran A I y y A I x
4 brin y A I x y A x y I x
5 ancom y A x y I x y I x y A x
6 1 ideq y I x y = x
7 6 anbi1i y I x y A x y = x y A x
8 4 5 7 3bitri y A I x y = x y A x
9 8 exbii y y A I x y y = x y A x
10 breq1 y = x y A x x A x
11 10 equsexvw y y = x y A x x A x
12 3 9 11 3bitri x ran A I x A x
13 2 12 bitr4i x 𝖥𝗂𝗑 A x ran A I
14 13 eqriv 𝖥𝗂𝗑 A = ran A I