Metamath Proof Explorer


Theorem dffix2

Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion dffix2 Fix 𝐴 = ran ( 𝐴 ∩ I )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 elfix ( 𝑥 Fix 𝐴𝑥 𝐴 𝑥 )
3 1 elrn ( 𝑥 ∈ ran ( 𝐴 ∩ I ) ↔ ∃ 𝑦 𝑦 ( 𝐴 ∩ I ) 𝑥 )
4 brin ( 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ( 𝑦 𝐴 𝑥𝑦 I 𝑥 ) )
5 ancom ( ( 𝑦 𝐴 𝑥𝑦 I 𝑥 ) ↔ ( 𝑦 I 𝑥𝑦 𝐴 𝑥 ) )
6 1 ideq ( 𝑦 I 𝑥𝑦 = 𝑥 )
7 6 anbi1i ( ( 𝑦 I 𝑥𝑦 𝐴 𝑥 ) ↔ ( 𝑦 = 𝑥𝑦 𝐴 𝑥 ) )
8 4 5 7 3bitri ( 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ( 𝑦 = 𝑥𝑦 𝐴 𝑥 ) )
9 8 exbii ( ∃ 𝑦 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ∃ 𝑦 ( 𝑦 = 𝑥𝑦 𝐴 𝑥 ) )
10 breq1 ( 𝑦 = 𝑥 → ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑥 ) )
11 10 equsexvw ( ∃ 𝑦 ( 𝑦 = 𝑥𝑦 𝐴 𝑥 ) ↔ 𝑥 𝐴 𝑥 )
12 3 9 11 3bitri ( 𝑥 ∈ ran ( 𝐴 ∩ I ) ↔ 𝑥 𝐴 𝑥 )
13 2 12 bitr4i ( 𝑥 Fix 𝐴𝑥 ∈ ran ( 𝐴 ∩ I ) )
14 13 eqriv Fix 𝐴 = ran ( 𝐴 ∩ I )