Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
1
|
elfix |
⊢ ( 𝑥 ∈ Fix 𝐴 ↔ 𝑥 𝐴 𝑥 ) |
3 |
1
|
elrn |
⊢ ( 𝑥 ∈ ran ( 𝐴 ∩ I ) ↔ ∃ 𝑦 𝑦 ( 𝐴 ∩ I ) 𝑥 ) |
4 |
|
brin |
⊢ ( 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ( 𝑦 𝐴 𝑥 ∧ 𝑦 I 𝑥 ) ) |
5 |
|
ancom |
⊢ ( ( 𝑦 𝐴 𝑥 ∧ 𝑦 I 𝑥 ) ↔ ( 𝑦 I 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
6 |
1
|
ideq |
⊢ ( 𝑦 I 𝑥 ↔ 𝑦 = 𝑥 ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝑦 I 𝑥 ∧ 𝑦 𝐴 𝑥 ) ↔ ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
8 |
4 5 7
|
3bitri |
⊢ ( 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ( 𝐴 ∩ I ) 𝑥 ↔ ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ) |
10 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐴 𝑥 ↔ 𝑥 𝐴 𝑥 ) ) |
11 |
10
|
equsexvw |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 𝐴 𝑥 ) ↔ 𝑥 𝐴 𝑥 ) |
12 |
3 9 11
|
3bitri |
⊢ ( 𝑥 ∈ ran ( 𝐴 ∩ I ) ↔ 𝑥 𝐴 𝑥 ) |
13 |
2 12
|
bitr4i |
⊢ ( 𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ ran ( 𝐴 ∩ I ) ) |
14 |
13
|
eqriv |
⊢ Fix 𝐴 = ran ( 𝐴 ∩ I ) |